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IMPROVING THE COMMUNICATION PATTERN IN MAT-VEC OPERATIONS
FOR LARGE SCALE-FREE GRAPHS BY DISAGGREGATION∗

VERENA KUHLEMANN† AND PANAYOT S. VASSILEVSKI‡

Abstract. Matrix vector multiplication (mat-vec) is the key operation in any Krylov-subspace iteration method.
We are interested in Krylov methods applied to problems associated with graph Laplacians arising from large scale-
free graphs. Computations with graphs of this type on parallel distributed-memory computers are challenging. This
is due to the fact that scale-free graphs have a degree distribution that follows a power-law and currently available
graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads
to excessive inter-processor communication requirements during every mat-vec. We present an approach to alleviate
this problem based on embedding the original irregular graph into a more regular one by disaggregation (splitting
up) vertices in the original graph. The mat-vec operations for the original graph are performed via a factored triple
matrix vector product involving the embedding graph. Even though the latter graph is larger, we are able to decrease
the communication requirements considerably and improve the performance of mat-vec.

1. Introduction. Complex networks appear in various disciplines including for example math-
ematics, computer science, social and biological sciences. The analysis of these networks plays a
crucial role in its respective fields. Biologists and physicians are interested how and how fast a
disease might spread in a population, social scientists are often interested in the centrality of indi-
viduals in a social network, and computer scientists investigate the robustness of computer networks.
In 1999 Barabási and Albert analyzed the topology of a portion of the world wide web and found
the degree distribution of this network to follow a power law[5]. That is, the number of nodes of
a certain degree decreases exponentially with the degree. If P (k) denotes the number of nodes
with degree k, then P (k) ∼ k−γ . The parameter γ typically lies in the range between 1.5 and 4.
Networks with this property are called scale-free or power-law networks. These networks appear
in a variety of applications including social network analysis [4, 12, 14, 30, 31, 32], web mining
[9, 13, 28, 34], and bioinformatics [29, 20].

To analyze a network its topology and parameters of interest are usually modeled by a graph.
A graph is an ordered pair G = (V,E) where V is a set of n nodes or vertices, V = {1, 2, . . . , n},
and E is a set of edges. An edge is a pair of nodes and describes a connection between two nodes.
These pairs can be ordered or unordered. If the set of edges consists of ordered pairs of nodes, the
graph is called a directed graph or digraph, otherwise the graph is called undirected. In the following
we are only interested in undirected graphs and will omit the term undirected.

One faces many challenges when analyzing scale-free networks. The networks of interest are
usually huge and are constantly increasing in size. A Google search on the number ”2” in October
2010 returned about 16,250,000,000 results while the same search in January 2012 returned about
25,270,000,000 results. Thus, it is required to use distributed memory systems for computations on
large scale-free graphs.

In network analysis one is often interested in finding eigenvalues and eigenvector of the graph
Laplacian. Given a graph G the unnormalized graph Laplacian is given by

L(G) = D(G)−A(G),
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where A(G) is the adjacency matrix of the graph G and D(G) is a diagonal matrix with vertex
degrees on the diagonal. The computation of eigenvalues and eigenvectors of scale-free graphs is very
expensive. Any Krylov method based eigensolver (the method of choice in the large-scale) spends
the majority of the time in the matrix-vector multiplication. Yoo et al. identified the increased
communication overhead in the mat-vec as the performance bottleneck for parallel eigensolvers
for scale-free graphs [38]. A common technique to improve the communication requirements is to
re-partition the matrix before starting any computations. Graph partitioners attempt to partition
the nodes of a graph in roughly equal sized non-overlapping parts such that the number of edges
between these parts is minimized. However, state of the art parallel graph partitioners such as
ParMetis [26] and Pt-scotch [10] were designed for graphs with a more regular or uniform degree
distribution. They employ multilevel partitioning algorithms [11, 18, 21, 22, 23, 24, 25] which
depend on coarsening the graph until it is small enough to be efficiently partitioned. In the case of
scale-free graphs these partitioners produce partitions that only slightly improve the communication
behavior and require a high amount of time and memory [1]. The aforementioned graph partitioners
attempt to partition the nodes of a graph. Edge or 2D partitioning has been successfully used to
improve the scalability of mat-vec [38]. While mat-vec based on 2D partitioning can be easily used
for matrix-free eigensolvers, available multilevel methods require a row-(or edge-) wise distribution
of the matrix.

In this paper we present a method that embeds the original irregular graph into a more regular
one by disaggregation (splitting up) vertices in the original graph. The mat-vec operations for
the original graph are performed via a factored triple matrix-vector product involving the embed-
ding graph. Even though the latter graph is larger, we are able to decrease the communication
requirements considerably and improve the performance of mat-vec.

The remainder of the present paper is structured as follows. In Section 2, we summarize
our disaggregation idea, whereas in Section 3, we apply it such that to reduce inter-processor
communications in the parallel implementation of the matrix-vector products. In the last section,
Section 4, we illustrate the performance of our method. At the end we give some conclusions and
identify areas for future work.

!

!

!

!

Fig. 2.1. Disaggregating a node and using a circle as
connected between the new nodes.

2. Disaggregation. Scale-free graphs have
a very irregular degree distribution. The exis-
tence of a few very high degree nodes together
with many small degree nodes make compu-
tations with these types of graph particularly
challenging. We attempt to tackle these chal-
lenges by disaggregation or splitting up nodes
in the graph. Thus, resulting in a larger graph
with a more favorable structure. Enlarging a
graph of a sparse matrix with unfavorable struc-
ture to a graph with a more desired structure
has been used before. In particular, in the con-

text of matrix stretching where dense rows (columns) in a sparse matrix are split into several more
sparse rows (columns) [2, 16]. For other method that use matrix enlarging refer to [3]. In the finite
element literature, the popular FETI (finite element tearing and interconnecting) technique, [15],
can be viewed as a specialized disaggregation method.
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Fig. 2.2. Disaggregating a node and using a complete
graph as connected between the new nodes.

If a node i is disaggregated, it is split
up into several new nodes i1, . . . , ik and every
neighbor of node i in the graph is connected
to exactly one of the nodes i1, . . . , ik. Usually,
we connect the nodes i1, . . . , ik, called internal
nodes, with a connected structure such as a cy-
cle as seen in figure 2.1 or a complete graph as
seen in figure 2.2. We can represent the disag-
gregated graph Gf as a combination of a graph
that contains the same number of edges as the
original graph G and a graph that contains only
the new internal edges, called internal graph. A visualization can be seen in figure 2.3. The matrix
corresponding to the disaggregated graph Gf is denoted by Af , the matrix with the same number of
edges as G, but nodes from Gf is denoted by B, and the matrix corresponding to the internal graph
is denoted by C. We can write Af as Af = B + sC, where s is the weight given to the internal
edges. Under certain conditions the eigenvalues of Af approximate the eigenvalues of A provided
that the weigh on the internal edges s is chosen large enough.

Fig. 2.3. Presenting the disaggregated graph as a
combination of the graph with internal and external edges.

Next, we construct a non-negative intergrid-
transfer operator Q. Let n denote the number
of nodes in the original graph G and nGf

the
number of nodes in the disaggregated graph Gf .
The operator Q is used to prolongate a vector
from Rn to RnGf ,

Q : Rn → RnGf

The matrix Q is constructed as follows. If i =
1, . . . , nGf

are the nodes in Gf and j = 1, . . . , n
are the nodes in G, then Qij = 1 whenever node
i in Gf represents node j in G. Thus, if node j
in G is not disaggregated the jth column in Q
has exactly one entry. If j is disaggregated into k nodes, the jth column contains exactly k entries.
Now, the original matrix A can be written in terms of the disaggregated matrix Af by A = QtAfQ.
That is, we can replace the mat-vex Ax by the factored triple matrix vector product Qt(Af (Qx)).
Note that C · Q = 0 and the internal graph is not necessary for the factored triple matrix vector
product. That is, one can use Qt(B(Qx)) for the mat-vec. The transfer operator Q can be scaled
such that it is orthogonal. Let D ∈ Rnxn be a diagonal matrix such that Di,i = 1√

k
if node i is

disaggregated into k nodes. Then, Q̂ = Q ·D is orthogonal and has the following properties
• Q̂tQ̂ = In and
• Q̂Q̂t is a projection onto the range of Q̂.

In a linear algebra matrix form the disaggregation can be described as follows. Consider the
following matrix

A =

 A

[
0
a

]
[0, at] α

 =

 A11 A12 0
A21 A22 a
0 at α

 .
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Here A is a n× n matrix, A23 = a ∈ Rm, m ≤ n, and α ∈ R. In our application, the last row (and
column) will correspond to a vertex of the associated sparse graph for A with large degree m ≥ 1
that we want to disaggregate.

We are interested in the following “matrix embedding”. Let 1 = (1) ∈ Rm be the constant
vector. Form the m × m diagonal matrix D = diag(di)mi=1, where d = (di)mi=1 to be determined
later on. Finally, let Λ be the m×m periodic tridiagonal graph Laplacian matrix

Λ =



2 −1 0 . . . −1
−1 2 −1 . . . 0

0
. . . . . . . . . 0

0
. . . −1 2 −1

−1 0 . . . −1 2

 . (2.1)

In what follows, Λ can be any graph Laplacian matrix corresponding to a graph defined by the
sparsity structure imposed on the additionally introduced nodes. This graph sometimes (in what
follows) will be referred to as “internal graph.” For any such internal graph Laplacian, we have
Λ1 = 0.

Given a parameter s ≥ 0 and a given vector c2 ∈ Rm, we form the m × m diagonal matrix
C2 = diag(c2) (i.e., C21 = c2), and consider

T = −DC2 + sΛ.

We are interested in the following (n+m)× (n+m) embedding matrix

Af =

 A

[
0
D

]
[0, D] T

 · (2.2)

From now on we assume that the original matrix A corresponds to the graph Laplacian. For
the considerations below it is sufficient to assume that Ac ≥ 0 for a positive vector c1

c2

σ

 ,
and that A has non-positive off-diagonal entries. In that case, we choose the diagonal matrix
D = diag (di)mi=1 as

di = σai, where a = (ai). (2.3)

It is clear that di < 0 and D1 = aσ.
We have the following result.
Lemma 2.1. The embedding matrix Af has non-positive off-diagonal entries and its action on

the positive vector cf =

 c1

c2

1

 is the same (non-negative)as of A on c for the common rows of A
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and Af . For the embedding rows this action is zero. That is, if c is a null-vector of A, then cf is
a null-vector of Af . In the latter case consider

Q =

 I 0 0
0 I 0
0 0 1

σ1

 .
Then, the following Galerkin relation holds,

A = QtAfQ. (2.4)

Proof. We first notice that all off–diagonal entries of Af are non-positive. What remains is to

show that its action on the positive vector

 c1

c2

1

 ∈ Rn+m is non-negative. In fact that action

for the common rows of A and Af is the same as the action of the original matrix A (which is
non-negative by assumption). We have

A21c1 +A22c2 +D1 = A21c1 +A22c2 + aσ = (Ac)2 .

For the embedding rows, the action is zero due to the choice of Λ and T . Indeed, we have

Dc2 + T1 = Dc2 + (−DC2)1 + Λ1 = Dc2 + (−Dc2) = 0.

To prove the Galerkin relation (2.4), from the third component of Ac = 0, we obtain

atc2 + ασ = 0. (2.5)

Then, by direct computation, we have (using C21 = c2, D1 = aσ, and hence 1tD = σat)

QtAfQ =

 A11 A12 0
A21 A22

1
σD1

0 1
σ1

tD 1
σ1

t (−DC2 + sΛ) 1
σ1


=

 A11 A12 0
A21 A22 a
0 at 1

σ2 1t(−Dc2)


=

 A11 A12 0
A21 A22 a
0 at − 1

σa
tc2


=

 A11 A12 0
A21 A22 a
0 at α

 = A.

In the last equality, we used (2.5). This completes the proof.
In conclusion, we have the following result.
Theorem 2.2. The graph Laplacian matrix A can be embedded into a larger in size but

sparser matrix Af that is also a graph Laplacian matrix. The two graph Laplacians are related via
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a Galerkin relation, A = QtÂQ for a block–diagonal aggregation type matrix Q, where each column
of Q contains non-zero constant entries in its rows that arise from a disaggregated vertex.

To show the first statement, we use the following well-known characteristic property of graph
Laplacian (that can serve as an alternative definition).

Proposition 2.3. Any symmetric matrix M = (mij)ni,j=1 such that M1 = 0, can be charac-
terized with the expression for any u = (ui), v = (vi) ∈ Rn,

vtMu = −1
2

∑
i,j

mij (vi − vj)(ui − uj). (2.6)

The latter, for mij ≤ 0, i 6= j, is the definition of (symmetric) weighted graph Laplacian matrix.
Proof. To prove this identity (which has been used before, see, e.g., formulas (2.1)-(2.2) in [36]),

use the fact that M1 = 0, i.e., that for any i,

mii = −
∑
j 6=i

mi,j .

Then

vtMu =
n∑
i=1

n∑
j=1

mijuivj =
n∑
i=1

miiuivi +
n∑
i=2

i−1∑
j=1

mijuivj +
n−1∑
i=1

n∑
j=i+1

mijuivj

= −
n∑
i=2

uivi

i−1∑
j=1

mij −
n−1∑
i=1

uivi

n∑
j=i+1

mij

+
n∑
i=2

i−1∑
j=1

mijuivj +
n−1∑
i=1

n∑
j=i+1

mijuivj

=
n∑
i=2

i−1∑
j=1

mijui(vj − vi) +
n−1∑
i=1

n∑
j=i+1

mijui(vj − vi)

=
n∑
i=2

i−1∑
j=1

mijui(vj − vi) +
n∑
j=2

j−1∑
i=1

mijui(vj − vi)

=
n∑
i=2

i−1∑
j=1

mijui(vj − vi) +
n∑
i=2

i−1∑
j=1

mjiuj(vi − vj)

=
n∑
i=2

i−1∑
j=1

(mijui −mjiuj)(vj − vi).

Thus for symmetric matrix M , mij = mji, we obtain the desired representation (2.6), which is
the definition of the graph Laplacian matrix associated with the graph G defined by the sparsity
pattern of M when mij ≤ 0, i 6= j. I.e., the quantities −mij > 0 play role of weights assigned to
each edge (i, j) of the graph G.

3. Parallel Disaggregation. The communication overhead during the matrix vector multi-
plication has been identified as the performance bottleneck for parallel eigensolvers for scale-free
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graphs. In our experience large scale-free graphs require the communication between all processors
during mat-vec. Even after re-partitioning with a graph partitioner such as ParMetis or Pt-scotch,
communication is needed between all of the processors. Abou-Rjeili and Karypis explained the in-
ability of these partitioners to find a suitable partitioning for scale-free graphs as follows [1]. Most
of the available partitioners rely on multilevel methods where the graph is coarsen until it is small
enough to employ partitioning directly. The coarsening methods use vertex matching to reduce the
number of nodes, and the method depends on finding large enough matchings to coarsen the graph
efficiently. Scale-free graphs have a very irregular degree distribution and a large number of low
degree nodes is connected to a small number of very high degree nodes. This property leads to
relatively small matchings and the partitioner needs a high number of levels to coarsen the graph
enough to be able to partition it. In addition this leads to a very high memory demand, and is not
suitable for large graphs. Furthermore, scale-free graphs usually also have the small-world property,
that is, the graph has a small diameter. This property also makes partitioning more challenging.

A good vertex based partitioning tries to balance the computational work by assigning roughly
the same number of vertices and edges to each processor while at the same time minimize the
communication requirements. Diagonal banded matrices are optimal for communication pattern,
as every processor only needs to communicate with a few close neighbors. We use disaggregation
of nodes to embed the original graph in a larger graph whose matrix representation has a more
banded structure. We thrive to achieve a given inter-processor communication structure. Any node
that violates this communication pattern is disaggregated and copies of this node are distributed
among the processors in such a way that the desired communication pattern is not violated. We
usually restrict the communication to a percentage or fraction of the other processors.

The communication pattern that we are enforcing depends on the ”distance” between two
processors. We define the distance of two processors as follows.

Definition 3.1. Assume that the number of processors is np. For two processors P and Q,
we define the distance between the two processors as

dist(P,Q) = min(|P −Q|, np− |P −Q|),

where P and Q are the indices (or ranks) of the processors. That is, 0 ≤ P, Q ≤ np− 1.
In particular, the distance between processor 0 and processor np − 1 is one. If communication is
restricted to a fraction p ∈ (0, 1) of the number of processors np, we say that node v violates the
communication pattern if for some neighbor u

dist(PROC(v), PROC(u)) > bp · np
2
c,

where PROC(v) and PROC(u) denote the processors that hold v and u, respectively.
The following proposition and its proof show how a node is split up and the neighbors are

connected to the new nodes.

Proposition 3.2. Assume that communication should be restricted to a fraction p ∈ (0, 1)
of the number of processors np. This restriction can be fulfilled by disaggregating any node in the
given graph G = (V,E) that violates the communication pattern into f nodes, where f = dnpl e, with
l = bp·np2 c.

Proof. Node i ∈ V violates the communication pattern if there exist j ∈ V with (i, j) ∈ E
such that dist(PROC(i), PROC(j)) > l. We disaggregate node i into f nodes i0, . . . , if−1. That
is, in the disaggregated graph Gf node i is represented by the nodes i0, . . . , if−1, where node ik,
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k = 0, . . . , f − 1 lies on processor (PROC(i) + k · l) mod np. The neighbors of i in graph G are
connected to the nodes i0, . . . , if−1 in the disaggregated graph Gf as follows. If u is a neighbor of
i in G, that is (i, u) ∈ E, then u is connected to ik in Gf , where

k =

{
bPROC(u)−PROC(i)

l c, if PROC(u) ≥ PROC(i)
bnp+PROC(u)−PROC(i)

l c, if PROC(u) < PROC(i).

Since ik lies on processor proc = (PROC(i) + k · l) mod np, and dist(PROC(u), proc) ≤ l, the
desired communication pattern is not violated by the edge between u and ik.

The details of the parallel disaggregation method are summarized in Algorithm 1. The input
matrix A can be either a (weighted) incidence matrix or a matrix corresponding to a graph Lapla-
cian. In both cases the output matrix Af will be a Laplacian matrix. To derive Af we use the
representation of a Laplacian matrix in terms of its edge-vertex incidence matrix EV and weight
matrix W [6, 8, 17],

Af = (EV )t ·W · (EV )

For a graph G = (V,E) the edge-vertex matrix EV is a matrix of size |E| × |V | that is set up as
follows. Each edge e ∈ E is arbitrarily directed as e = (u, v). The row e in EV has two entries,
EV (e, u) = 1 and EV (e, v) = −1. The weight matrix W of size |E| × |E| is a diagonal matrix with
positive entries on its main diagonal equal to the edge weights from the original graph G.

In our algorithm, we first count the number of nodes that violate the desired communication
pattern on every processor. Those are the nodes that need to be disaggregated. Each of these
nodes i is disaggregated into f nodes i0, . . . , if−1, where i0 replaces i on PROC(i) and ik is placed
on processor (PROC(i) + k · l) mod np. Thus, if nd is the number of nodes in G that need to be
disaggregated, the number of nodes in the disaggregated graph Gf is given by nGf

= |V |+nd ·(f−1).
The number of edges in the disaggregated graph Gf depends on the chosen internal graph that

describes the connection between i0, . . . , if−1. If the internal graph is a cycle (see matrix Λ in (2.1)),
one edge is added for every ik, that is, the number of edges in Gf is given by eGf

= |E| + nd · f .
After the number of nodes and edges of Gf are determined, we set up the required matrices EV ∈
ReGf

×nGf , W ∈ ReGf
×eGf , and Q ∈ RnGf

×n.
In a second sweep through the original graph G the values in EV , W , and Q are being set. For

every node i the process depends on if i is to be disaggregated. First, we describe the procedure
if i needs to be disaggregated. For every ik, k = 0, . . . , f − 1, set Q(ik, i) = 1. In addition we
need to connect the nodes i0, . . . , if−1. This depends on the chosen internal graph. If a cycle
is used, we connect ik with ik+1, k = 0, . . . , f − 2 and if−1 with i0. That is, for every e =
(ik, ik+1), k = 0, . . . , f − 2, we set E(e, ik) = 1, E(e, ik+1) = −1, and W (e, e) = s. We also set
E((if−1, i0), if−1) = 1, E((if−1, i0), i0) = −1, and W ((if−1, i0), (if−1, i0)) = s. Next, the neighbors
of i in G have to be connected to the appropriate ik. For i ∈ V such that (i, j) ∈ E, k is chosen
as in the proof of proposition 3.2. Let jGf

denote the index of j in Gf . For e = (ik, jGf
) we set

E(e, ik) = 1, E(e, jGf
) = −1, and W (e, e) = |A(i, j)|. Note that if j lies on the same processor as

i, then k = 0 and the edge e = (ik, jGf
) lies on the same processor as the edge (i, j) in G. Next,

we describe the procedure if node i does not need to be disaggregated. In this case we simply set
Q(iGf

, i) = 1, where iGf
denotes the index of i in Gf . For every e = (i, j) ∈ E, we determine

the corresponding edge eGf
= (iGf

, jGf
) ∈ EGf

and set E(eGf
, iGf

) = 1, E(eGf
, jGf

) = −1, and
W (eGf

, eGf
) = |A(i, j)|. After all values in EV and W have been set, Af can be determined by

Af = (EV )t ·W · (EV ).
8



Algorithm 1 Parallel Disaggregation
Input symmetric matrix A ∈ Rn×n, fraction p ∈ (0, 1)
Output disaggregated matrix Af , transfer operator Q

1: np← number of processors
2: l← bprop·np2 c, f ← dnpl e
3: for each processor proc do
4: count← 0
5: for each row i that lies on processor proc do
6: if ∃j with A(i, j) 6= 0 AND dist(proc, PROC(j)) > l then
7: count← count+ 1 . disaggregate i
8: end if
9: end for

10: send count to the processors (proc+ k · l)mod np, k = 1, . . . , f − 1
11: . these processors receive copies of the disaggregated nodes from processor proc
12: receive the corresponding count values from processors (proc+k ·l)mod np, k = 1, . . . , f−1,
13: . to determine the additional number of rows needed on this processor
14: end for
15: eGf

← number of edges in Gf . this value depends on the internal graph
16: nGf

← number of nodes in Gf
17: set up edge-vertex matrix EV of size eGf

× nGf

18: set up matrix Q of size nGf
× n

19: set up diagonal matrix W of size eGf
× eGf

20: for each processor proc do
21: for each row i that lies on processor proc do
22: if ∃j with A(i, j) 6= 0 AND dist(proc, PROC(j)) > l then
23: disaggregate i: represent row i by f rows i0, . . . , if−1

24: for k = 0, . . . , f − 1 do
25: Q(ik, i)← 1
26: end for
27: set edges between nodes i0, . . . , if−1 . depends on internal graph
28: for all j with A(i, j) 6= 0 do
29: if PROC(j) ≥ proc then
30: k ← bPROC(j)−proc

l c
31: else
32: k ← bnp+PROC(j)−proc

l c
33: end if
34: jGf

= index of node j in Gf , e← (ik, jGf
)

35: EV (e, ik)← 1, EV (e, jGf
)← −1, W (e, e)← |A(i, j)|

36: end for
37: else
38: iGf

= index of node i in Gf , Q(iGf
, i)← 1

39: for all j with A(i, j) 6= 0 do
40: jGf

= index of node j in Gf , e← (iGf
, jGf

),
41: EV (e, iGf

)← 1, EV (e, jGf
)← −1, W (e, e)← |A(i, j)|

42: end for
43: end if
44: end for
45: end for
46: Af ← (EV )t ·W · EV
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As described in the previous section, the original matrix A is given by A = QtAfQ, where
Af = B + s · C is the disaggregated matrix and Q is an orthogonal intergrid-transfer operator.
For the matrix vector multiplication it is not necessary to connect the disaggregated nodes, that
is, the matrix C can be omitted. However, if the disaggregated matrix is to be used in a different
context, for example as an auxiliary preconditioner, the connectivity of the graph might be desir-
able. Proposition 3.2 only shows that the graph corresponding to matrix B does not violate the
communication pattern. However, if a cycle is used to connect the internal nodes i0, . . . , if−1 the
graph Gf corresponding to the disaggregated matrix Af does not violate this pattern as well. This
can easily be seen as subsequent nodes ik and ik+1 lie on processors proc1 = (proc + k · l)mod np
and proc2 = (proc + (k + 1) · l)mod np, respectively, and dist(proc1, proc2) ≤ l. In the following,
we will use a cycle for the connection between internal (disaggregated) nodes and set the weight on
these internal edges to one, that is s = 1.
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Fig. 3.1. Non-zero pattern of the original matrix, the original matrix after redistributing
with ParMetis, and after using disaggregation to limit communication to 75%, 50%, or 25%
of the other processors

In figure 3.1
we present the
non-zero structure
of a scale-free graph
before and after
disaggregation. The
matrix is split
up on 16 proces-
sors and has 100
nodes per proces-
sor. In the top on
the left-hand side
(a) the non-zero
structure of the
original matrix is
shown. We can
recognize that this
matrix structure
leads to commu-
nication between
every single pro-
cessor during mat-
vec. On the
top right (b) the
structure of the
same matrix is
given after it is
redistributed with
ParMetis. The matrix is denser on the block diagonal compared to the original matrix, but com-
munication between all processors during mat-vec is still required. ParMetis mainly reduces the
size of the messages but not the number of messages that needs to be send between processors.
Thus, we have a large number of small messages which is a particularly unfavorable setting for
distributed systems. On the bottom row the non-zero structure of the same matrix is shown after
it is disaggregated, that is the non-zero structure of Af is shown. We restricted the communication
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to 75%, 50% and 25% of the processors. Recall that every processor can communicate to processors
that have a distance of at most l = bp·np2 c. Thus, for the particular example with 16 processors
every processor is only allowed to communicate with the closest 12, 8, or 4 processors.

While the communication volume is not or only slightly reduced with disaggregation, the num-
ber of messages that are being sent during mat-vec is significantly reduced. Thus, we have a
relatively small number of large messages. In addition, each processor communicates with the same
number of processors. This is a very favorable communication behavior for a distributed setting.
Also, since the distribution of the disaggregated nodes is done in a very structured way, load bal-
ancing can be preserved provided that roughly the same number of nodes are disaggregated on
every processor. The mat-vec will be employed by the factored triple matrix vector multiplication
Qt(Af (Qx)). Note that Q is very sparse. If a node is not disaggregated Q has exactly one entry in
the corresponding column. If a node is disaggregated the number of entries in the corresponding
column depend on the number of nodes that this node is split up into. Next we show that this
number does not increase as the number of processors increases.

Proposition 3.3. If communication is restricted to a fraction p ∈ (0, 1) of the number of
processors np with p · np > 2, then every processor can communicate solely with its 2 · l = 2 · bp·np2 c
nearest neighbors. Every node that violates the desired communication pattern is disaggregated into
f = dnpl e nodes, and f is bounded by

2
p
≤ f ≤ 2

p− 2
np

.

Proof. With l = bp·np2 c follows

p · np
2
− 1 ≤ l ≤ p · np

2
.

Thus, f is bounded below by

f = dnp
l
e ≥ np

p·np
2

=
2
p
,

and above by

f ≤ np
p·np

2 − 1
=

2
p− 2

np

.

That is, the communication requirement, meaning the number of messages, for a multiplication
with Q does not increase even if the number of used processor increases.

4. Numerical Results. Our experiments were conducted on Hera, a large parallel system at
Lawrence Livermore National Laboratory. Hera is a multicore Linux cluster with 864 nodes. Each
node has 32 GB memory and 4 sockets with AMD Quadcore 2.3 GHz processors. The nodes are
connected by Infiniband network.

In our implementation we use the PETSc library [33] for the matrix vector multiplication. We
use a parallel scale-free graph generator [37] to test our method. The graph generator generates
scale-free graphs using the preferential attachment method [5]. In addition, we used a real-world ex-
ample from the WebGraph library [7]. This social graph, called Hollywood-2011, represents working
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relationships between actors. Nodes are actors, and two actors are joined by an edge whenever they
appeared in a movie together. In table 4.1 the increase in matrix size of the disaggregated matrix is
given as ratio between the size of the disaggregated and original matrix. The first two matrices are
generated with the scale-free graph generator and have average degree two and five. The hollywood
matrix has 2,180,759 nodes, 228,985,632 edges, and average degree 105.003. As expected, the more
we restrict the communication the more the disaggregated matrix increases. While the matrix sizes
increase considerably we will later see that the time saved during communication is large enough
to compensate for the additional computational requirement.

Table 4.1
Ratio of the number of nodes of the disaggregated matrix and the original matrix.

75% 50% 25% 10%
avg=2 1.7 2.6 5.8 15.4
avg=5 2.2 3.4 7.1 18.3

hollywood 1.7 2.4 5.0 12.8

Table 4.2
Ratio of the number of nodes of the disaggregated matrix and the original matrix. The matrix was re-partitioned

with ParMetis before applying disaggregation.

75% 50% 25%
avg=2 1.4 1.9 3.9
avg=5 2.0 3.0 6.4

hollywood 1.66 2.4 4.77

Table 4.3
Ratio of the number of edges of the disaggregated matrix and the original matrix.

75% 50% 25% 10%
avg=2 1.5 2.2 4.2 10
avg=5 1.4 1.8 2.8 5.9

hollywood 1.03 1.06 1.13 1.36

We compared the size of the disaggregated matrix if re-partitioning with ParMetis is applied
before using disaggregation. The results are given in table 4.2. Note that re-partitioning the matrix
leads to slightly smaller disaggregated matrices. In table 4.3 we provide the ratio of the number
of non-zeros of the disaggregated matrix to the number of non-zeros in the original matrix. The
increase in number of non-zeros results purely from adding internal edges.

In figure 4.1 the time needed to perform 10 matrix vector multiplications with the matrices
generated by [37] are given. We consider two different matrix vector multiplications, the factored
triple matrix vector product Qt(Af (Qx)) (right column) and Afx (left column). The matrices have
10,000 nodes per processor, and have average degree 2 (top row) and 5 (bottom row). During
disaggregation communication is restricted to 75%, 50%, and 25%. In both cases the matrix was
re-partitioned with ParMetis before applying disaggregation. First, we can note that re-partitioning
with ParMetis (solid red line) only gives a small advantage over mat-vec with the original matrix
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(dotted red line) if a small number of processors are used. For a very small number of processors
disaggregation does not give an advantage. The time saved during communication does not offset
the increased workload generated by working with a larger matrix. However, as the number of pro-
cessors increases the reduced communication becomes more prevalent. As the number of processors
increases it becomes evident that restricting communication brings a large advantage even though
the matrix size increases considerably. Note that we used a rather small number of processors. For
a larger number of processors the memory requirement for ParMetis became too large.
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16 80 160 240 320
0.01

 0.1

   1

  10

number of processors

tim
e 

fo
r 1

0 
m

at
rix
−v

ec
to

r m
ul

ts
average degree = 5

 

 

original
parmetis
disaggregation25
disaggregation50
disaggregation75

Student Version of MATLAB

(d) MatVec: QtAf Qx

Fig. 4.1. Numerical results for matrices with average degree of two (top row) and
five (bottom row). The matrices have 10,000 nodes per processor. Before disaggregating
the matrices, we first repartitioned them with ParMetis. The time needed for 10 mat-vec
is given in seconds.

In our next exper-
iment we omitted re-
partitioning the ma-
trix. The results are
given in figure 4.2.
The matrices used are
of the same type as
in the previous ex-
periment. That is,
the matrices are gen-
erated with [37] and
have 10,000 nodes per
processor and aver-
age degree two or
five. Besides restrict-
ing the communica-
tion to 75%, 50%, and
25%, we included re-
sults were communi-
cation was restricted
even further. These
experiments, similar as
the ones before, are
weak scaling experi-
ments. That is, ide-
ally the time should
stay constant as the
number of processors
increase as the ma-
trix size per processor
stays the same. For the mat-vec with the original matrix (red line) this is clearly not the case. In-
stead the time needed for 10 mat-vecs increases very rapidly as the number of processors increases.
While the timings for the 75% and 50% case also increase at a fairly large rate, the 25% and 10% case
bring a clear advantage. Note that for multiplication with the disaggregated matrix Af restricting
the communication to 10% eventually outperforms disaggregation with 25% restriction. However,
for the factored triple matrix vector product Qt(Af (Qx)) the increases communication and compu-
tation requirements for the multiplication with Q and Qt offset this advantage and 25% restriction
usually outperform the 10% case. This observation suggests that restricting the communication
even further does not give an additional advantage.
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We also give the result of an experiment with a real world graph in figure 4.3. Note that this is a
strong scaling experiment and ideally the time needed should decrease as the number of processors
increases. We note that for this real-world problem the behavior is similar to the synthetic problem
and restricting the communication brings a huge advantage over the performance of the mat-vec
with the original matrix.

Lastly, we provide a small experiment in figure 4.4 to demonstrate the effect of the improved
mat-vec on the performance of an eigensolver. We used the Lanczos eigensolver from the SLEPc
library [19] for our experiment. The matrix was generated with [37] and has 100 nodes per processor
and average degree 2. Matrix vector multiplication was done via the factored triple matrix vector
product Qt(Af (Qx)). A considerable time reduction when using the factored triple matrix vector
product can be observed.
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(d) MatVec: QtAf Qx

Fig. 4.2. Numerical results for matrices with average degree of two (top row) and five (bottom row). The
matrices have 10,000 nodes per processor. No repartitioning is used. The time needed for 10 mat-vec is given in
seconds.
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Fig. 4.3. Numerical results for the hollywood-2011 matrix. Before disaggregating the matrix, we first reparti-
tioned it with ParMetis. The time needed for 10 mat-vec is given in seconds.
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Fig. 4.4. Time in seconds needed to find the 4 small-
est eigenvalues with Lanczos algorithm. The matrix has
100 nodes per processor and average degree 2.

Conclusions and Future Work. The
matrix vector multiplication is the bottleneck
for the parallel computation of eigenvalues and
eigenvectors of large scale-free graphs. Cur-
rently, no parallel method is available to par-
tition a scale-free graph in such a way that ma-
trix vector multiplication can be completed in
a sufficient way. The lack of good partitioners
for scale-free graphs arises mainly from the ir-
regular degree distribution and the existence of
very large degree nodes. We provided a method
to embed a scale-free graph into a more regu-
lar graph. The structure of the resulting graph
is favorable for distributed environments. Even
though the resulting graph is larger, we are able
to improve the regular matrix vector multiplica-
tion with a factored triple matrix vector prod-
uct using the disaggregated matrix and a trans-
fer operator. While in this paper we focused
on disaggregating scale-free graphs, the method
described can also be used for other graphs with irregular structure that cannot be successfully par-
titioned.

For future work we are interested in using the disaggregated matrix with large internal weight
s to compute its spectrum. For large s the spectrum of the disaggregated matrix approximates the
spectrum of the original matrix. For this to be feasible, a scalable (such as AMG) preconditioner is
needed. In addition, we are working to use the disaggregated matrix with s = O (1), to construct
an “auxiliary space” (AMG) preconditioner for the original matrix. It has the form B−1 = M−1 +
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QtB−1
disaggr.Q whereM is a standard smoother for the original matrix and B−1

disaggr. is a preconditioner
for the embedding matrix Af = B+ sC. This approach can be used within the effective 2D matrix
storage [38] of the original matrix. In either case, these preconditioners can be used in the Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG) eigensolver [27]. More detailed
studies on the latter topics are in progress and will be presented elsewhere.
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